

ESTER PLASTICIZERSFOR ELASTOMERS

Hallstar works collaboratively with companies around the world to deliver chemistry solutions that enhance next-generation products.

As manufacturers find themselves under pressure to innovate, their ability to compete globally depends increasingly on how well they can leverage the knowledge of technology suppliers.

Hallstar's expertise in polymer modification and optimization, coupled with our application knowledge across a wide range of industrial products, is unique in the specialty chemical industry. Our ability to continually invent and formulate with esters to craft important functionality—including meeting the challenge of replacing phthalates—is based on years of specialized esterification experience only we can claim.

This experience has led to the development of our proprietary molecular design, the Paraplex Approach. Selecting ester plasticizers can be difficult, but with the Paraplex Approach, our customers can quickly identify unique plasticizer solutions based on tightly defined performance requirements.

Taking a collaborative approach to new products and solutions is what Hallstar is all about. Together we can explore new approaches and possibilities, and anticipate what it takes to succeed tomorrow, next year and for years to come. Explore what our innovative plasticizers can do, then give us a call.

LET'S WORK WONDERS

HOW TO SELECT A PLASTICIZER

Commonly used plasticizer categories include the following:

Standard Monomerics

are typically low molecular weight, general purpose products offering a good balance of performance properties for non-critical end use applications. These plasticizers generally fall under our Plasthall® trade name, such as Plasthall® DOA, 100 or 503.

Specialty Monomerics

are used in more critical applications that require more specialized performance for more demanding end uses. Critical applications might include: retention of low-temperature properties after aging, underthe-hood applications requiring high and low temperatures, or fuel resistance. These products carry our Plasthall®, TegMeR® and TP-Series trade names.

Polymerics

are higher molecular weight products used for their permanence and low-migratory properties, often in combination with a monomeric plasticizer. These products typically fall under our Plasthall® P-Series, Paraplex® or Dioplex® trade names.

Phthalate Replacement

technology is at the forefront of Hallstar's product development efforts. On the subsequent pages that detail different elastomers, note that ALL of these ester plasticizers are truly phthalate replacements as they are all based on different types of nonphthalate chemistries. Specific to nitrile rubber (NBR), information on our Plasthall® PR-Series of phthalate replacement products (A126, A200, A217, LCOA and A610), can be found on pages 7-8. Note that PR-A610 is certified by the USDA to be 99 percent renewably sourced and is also 100 percent biodegradable. Our website has additional information on PR-A610 in epichlorohydrin (ECO) and polychloroprene (CR).

When selecting an ester plasticizer, it is important to consider which elastomer is being used and the properties of that elastomer. Plasticizers and elastomers need to be compatible with each other based on having similar polarities.

The Plasticizer/Polymer Polarity Chart on page 22 graphically shows the relationship between compatibility and polarity for esters and elastomers.

CONTENTS

Monomeric Ester Plasticizers for Nitrile
Rubber (NBR)
Polymeric Ester Plasticizers for Nitrile
Rubber (NBR)
Phthalate Replacement Plasticizers for Nitrile Rubber (NBR)
Ester Plasticizers for Acrylic Rubber (AEM/ACM)9 - 10
Monomeric Ester Plasticizers for
Polychloroprene (CR)11 - 12
Ester Plasticizers for Chlorinated
Polyethylene Elastomers (CPE)13-14
Ester Plasticizers for Hydrogenated Nitrile
Butadiene Rubber (HNBR)15 - 16
Monomeric Ester Plasticizers for
Epichlorohydrin Rubber (ECO)17 - 18
Polymeric Ester Plasticizers for
Epichlorohydrin Rubber (ECO) 19 - 20
The Paraplex Approach 21
Plasticizer and Polymer
Polarity Chart

POLYMER INFORMATION

Nitrile elastomers (NBR) result from reactions of butadiene and acrylonitrile (ACN) monomers. ACN content ranges from a high of about 50 percent to a low of about 18 percent. Available grades have approximately 50, 40, 30 and 20 percent ACN. NBR blends well with many other polymers, such as polyvinyl chloride (PVC), styrene butadiene rubber (SBR) and chloroprene rubber (CR).

Oil and fuel resistance are the primary reasons for using NBR, but another important property is its abrasion resistance. Normal service temperatures are -40°C to 125°C, but special

compounding can broaden this range to -55°C to 150°C for intermittent service. The elastomer requires antioxidants, antiozonants, fungicides, plasticizers, tackifiers and flame retardants as the occasion and severity of the application demands. It can be cured with sulfur or peroxide systems. High-ACN polymers require high-polarity plasticizers, low-ACN polymers require low-polarity plasticizers. Polymerics used at greater than 15 PHR are generally used in combination with monomerics.

APPLICATIONS

PRODUCTS THAT REQUIRE RESISTANCE TO OIL AND FUEL SUCH AS:

- Adhesives
- Bladders
- Conveyor belts and rollers
- Diaphragms
- Fuel cell liners
- Fuel lines and hoses (covers and tubes)
- Gaskets
- Grommets
- Kitchen mats
- O-rings
- Oil well parts
- Packings
- Print rolls and blankets
- Pump liners
- Seals
- Shoes and boots
- Waterproofing
- Wire/cable jackets and insulation

.6 6 .1 5 .3 47 .2 1 9 2 .4 10 .0 15 .85 219 .40 44 .60 6 .60 6 .79 1.20 .7 -45	9 26.2 3 5.2 5 6.5 5 5.5 7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39	7050 36.2 2.3 3.2 7.0 52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	26.4 5.3 6.6 45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42 -44.3	28.6 8.5 10.3 5.9 42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35 -33.6	TP-S TP-95® 28.4 4.3 5.5 5.9 48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42 -44.8	27.4 3.3 4.4 5.8 47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193 -46 -49.2	29.6 3.3 4.2 6.1 50.9 0.8 2.7 10.4 13.0 1890 415 63 1.196 -43 -43.2	29. 8. 9. 6. 47. 1. 3. 190 50 6 1.19 -3
(DBEE) .4 26 .2 5 .6 6 .1 5 .3 47 .2 1 .9 2 .4 10 .0 15 .35 219 .40 4 .60 6 .7 -45	9 26.2 3 5.2 5 6.5 5 7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	36.2 2.3 3.2 7.0 52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	26.4 5.3 6.6 45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	28.6 8.5 10.3 5.9 42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	28.4 4.3 5.5 5.9 48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	27.4 3.3 4.4 5.8 47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	29.6 3.3 4.2 6.1 50.9 0.8 2.7 10.4 13.0 1890 415 63 1.196	29. 8. 9. 6. 47. 1. 3. 190 50 6. 1.19
.4 26 .2 5 .6 6 .1 5 .3 47 .2 1 .9 2 .4 10 .0 15 .35 219 .40 40 .60 60 .7 -45	9 26.2 3 5.2 5 6.5 5 5.5 7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	2.3 3.2 7.0 52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	5.3 6.6 5.6 45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	8.5 10.3 5.9 42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	4.3 5.5 5.9 48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	3.3 4.4 5.8 47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	3.3 4.2 6.1 50.9 0.8 2.7 10.4 13.0 1890 415 63 1.196	8. 9. 6. 47. 1. 3. 9. 13. 190 6. 1.19
.2 5 .6 6 .1 5 .3 47 .2 1 .9 2 .4 10 .0 15 .35 219 .40 4 .60 60 60 .77 -45	3 5.2 5 6.5 5.5 7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	2.3 3.2 7.0 52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	5.3 6.6 5.6 45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	8.5 10.3 5.9 42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	4.3 5.5 5.9 48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	3.3 4.4 5.8 47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	3.3 4.2 6.1 50.9 0.8 2.7 10.4 13.0 1890 415 63 1.196	8. 9. 6. 47. 1. 3. 9. 13. 190 50 6. 1.19
.6 6 .1 5 .3 47 .2 1 .9 2 .4 10 .0 15 .35 215 .40 44 .50 6 .77 -45	5	3.2 7.0 52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	6.6 45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193	10.3 5.9 42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	5.5 5.9 48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	4.4 5.8 47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	10.4 13.0 1890 415 63 1.196	9 6 47 1 3 9 13 190 50 6 1.19
1.1 5 1.3 47 1.2 1 1.9 2 1.4 10 1.0 15 1.35 21 1.40 4 1.40	5 5.5 7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	7.0 52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	5.6 45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	5.9 42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	5.9 48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	5.8 47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	6.1 50.9 0.8 2.7 10.4 13.0 1890 415 63 1.196 -43	66 477 1 33 190 50 4 1.119
.3 47 .2 1 .9 2 .4 10 .0 15 .5 21 .40 44 .60 60 60 .7 -45	7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	10.4 13.0 1890 415 63 1.196	47 1 3 9 13 19 5 1.1
.3 47 .2 1 .9 2 .4 10 .0 15 .5 21 .40 44 .60 60 60 .7 -45	7 40.2 0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	52.2 0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	45.3 1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	42.3 1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	48.2 0.9 2.7 9.6 13.8 1995 495 60 1.204 -42	47.6 0.8 2.5 10.0 14.2 2065 490 61 1.193	10.4 13.0 1890 415 63 1.196	47 1 3 9 13 19 5 1.1
.2 1 .9 2 .0 15 .0 15 .0 15 .0 4 .0 4 .0 4 .0 4 .0 4 .0 4 .0 4 .0 4	0 1.0 6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	0.5 2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	1.0 2.5 9.7 14.2 2055 500 59 1.193 -42	1.2 3.7 9.9 14.4 2090 510 62 1.193 -35	0.9 2.7 9.6 13.8 1995 495 60 1.204	0.8 2.5 10.0 14.2 2065 490 61 1.193	0.8 2.7 10.4 13.0 1890 415 63 1.196	1 3 5 13 19 5 1.1
29 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 4.4 7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	2.4 11.2 13.9 2015 490 64 1.207 -38 -42.3	2.5 9.7 14.2 2055 500 59 1.193 -42	9.9 14.4 2090 510 62 1.193 -35	9.6 13.8 1995 495 60 1.204 -42	2.5 10.0 14.2 2065 490 61 1.193	10.4 13.0 1890 415 63 1.196	; 11 19 5 1.1
1.4 10 1.0 15 1.35 216 1.0 44 1.0 40 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	7 10.0 1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	11.2 13.9 2015 490 64 1.207 -38 -42.3	9.7 14.2 2055 500 59 1.193 -42	9.9 14.4 2090 510 62 1.193 -35	9.6 13.8 1995 495 60 1.204	10.0 14.2 2065 490 61 1.193	10.4 13.0 1890 415 63 1.196	11 19 5 1.1
150 15 219 440 440 440 450 460 460 460 460 460 460 460 460 460 46	1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	13.9 2015 490 64 1.207 -38 -42.3	14.2 2055 500 59 1.193 -42	14.4 2090 510 62 1.193 -35	13.8 1995 495 60 1.204 -42	14.2 2065 490 61 1.193	13.0 1890 415 63 1.196	1; 19 5 1.1
150 15 219 440 440 440 450 460 460 460 460 460 460 460 460 460 46	1 14.9 0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	13.9 2015 490 64 1.207 -38 -42.3	14.2 2055 500 59 1.193 -42	14.4 2090 510 62 1.193 -35	13.8 1995 495 60 1.204 -42	14.2 2065 490 61 1.193	13.0 1890 415 63 1.196	1; 19 5 1.1
35 219 40 44 50 60 60 42 42 -4 57 -45	0 2165 0 475 2 63 0 1.186 2 -39 2 -38.1	2015 490 64 1.207 -38 -42.3	2055 500 59 1.193 -42	2090 510 62 1.193 -35	1995 495 60 1.204 -42	2065 490 61 1.193	1890 415 63 1.196	19 5 1.1
40 440 60 60 699 1.20 42 -4 .7 -45	0 475 2 63 0 1.186 2 -39 2 -38.1	490 64 1.207 -38 -42.3	500 59 1.193 -42	510 62 1.193 -35	495 60 1.204 -42	490 61 1.193 -46	415 63 1.196	1.1
50 60 60 79 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	2 63 0 1.186 2 -39 2 -38.1	64 1.207 -38 -42.3	59 1.193 -42	62 1.193 -35	60 1.204 -42	61 1.193 -46	63 1.196 -43	1.1
99 1.20 42 -4 .7 -45	0 1.186 2 -39 2 -38.1	1.207 -38 -42.3	1.193 -42	1.193 -35	1.204	1.193 -46	1.196	
42 -4 .7 -45	2 -39 2 -38.1	-38 -42.3	-42	-35	-42	-46	-43	
-45 24	2 -38.1	-42.3			-42			
-45 24	2 -38.1	-42.3						
24								
	1 13							
		19	21	9	16	23	24	
	0 -27	-40	-25	-31	-36	-47	-13	
8	0 11	8	10	4	8	20	9	
5.0 -3		-3.4	-5.4	-0.8	-3.5	-10.5	-5.1	-
	-							
27	2 9	14	17	10	13	11	22	
	8 -45	-52	-49	-48	-51	-52	-40	
11	8 11	6	10	5	9	13	8	
.8 -11		-9.7	-11.9	-12.4	-11.3	-12.1	-11.8	-1
								-1
.5	, 11.5	7.1	10.7	1111	10.5	10.7	10.7	•
18	5 -7	0		-6	1	_2	20	
							-	-
								-
., -0	-0.1	0.2	-0.2	0.0	-0.0	-0.5	-0.4	_
1	4 0	1.4	-	0	7	0		
0								
1 1	0 / 5				5.5	6.4	6.8	
1	18 31 -4 5 0.6 0. 1 1 0	18	18	18	18 -5 -7 0 -4 -6 31 -43 -49 -54 -51 -51 5 3 2 0 6 4 0.6 0.6 0.3 2.3 0.7 1.4 0.9 -0.8 -0.1 0.2 -0.2 0.0 1 4 0 14 5 0 -8 -24 -17 -4 -30 -31	18 -5 -7 0 -4 -6 1 31 -43 -49 -54 -51 -51 -53 5 3 2 0 6 4 3 0.6 0.6 0.3 2.3 0.7 1.4 0.5 0.9 -0.8 -0.1 0.2 -0.2 0.0 -0.8 1 4 0 14 5 0 7 -8 -24 -17 -4 -30 -31 -7 0 -4 -9 -3 -2 -4 -1	18 -5 -7 0 -4 -6 1 -2 31 -43 -49 -54 -51 -51 -53 -53 5 3 2 0 6 4 3 5 0.6 0.6 0.3 2.3 0.7 1.4 0.5 0.5 0.9 -0.8 -0.1 0.2 -0.2 0.0 -0.8 -0.5 1 4 0 14 5 0 7 -8 -8 -24 -17 -4 -30 -31 -7 -30 0 -4 -9 -3 -2 -4 -1 -4	18 -5 -7 0 -4 -6 1 -2 20 31 -43 -49 -54 -51 -51 -53 -53 -29 5 3 2 0 6 4 3 5 0 0.6 0.6 0.3 2.3 0.7 1.4 0.5 0.5 0.7 0.9 -0.8 -0.1 0.2 -0.2 0.0 -0.8 -0.5 -0.4 1 4 0 14 5 0 7 -8 -4 -8 -24 -17 -4 -30 -31 -7 -30 -30 0 -4 -9 -3 -2 -4 -1 -4 -8

First Choice

Second Choice

Formulation: Krynac® 3345F - 100.0, Kadox® 920 - 5.0, Sulfur Spider® - 0.4, DQ - 1.0, Carbon Black N660 - 65.0, Stearic Acid - 1.0, Plasticizer - 20.0, MBTS - 2.0, Methyl Zimate - 1.5

Krynac® is a registered trademark of Lanxess. Kadox® is a registered trademark of Horsehead Corporation. Plasthall®, TP-95®, TP-90B®, TegMeR® and Sulfur Spider® are registered trademarks of Hallstar.

POLYMER INFORMATION

Nitrile elastomers (NBR) result from reactions of butadiene and acrylonitrile (ACN) monomers. ACN content ranges from a high of about 50 percent to a low of about 18 percent. Available grades have approximately 50, 40, 30 and 20 percent ACN. NBR blends well with many other polymers, such as PVC, SBR and CR.

Oil and fuel resistance are the primary reasons for using NBR, but another important property is its abrasion resistance. Normal service temperatures are -40°C to 125°C, but special compounding can broaden this range to -55°C to 135°C for intermittent service. The elastomer requires antioxidants, antiozonants, fungicides, plasticizers, tackifiers and flame retardants as the occasion and severity of the application demands. It can be cured with sulfur or peroxide systems. High-ACN polymers require high-polarity plasticizers, low-ACN polymers require low-polarity plasticizers. Polymerics used at greater than 15 PHR are generally used in combination with monomerics.

APPLICATIONS

PRODUCTS THAT REQUIRE RESISTANCE TO OIL AND FUEL SUCH AS:

- Adhesives
- Bladders
- Conveyor belts and rollers
- Diaphragms
- Fuel cell liners
- Fuel lines and hoses (covers and tubes)
- Gaskets
- Grommets
- Kitchen mats
- O-rings
- Oil well parts

- Packings
- Print rolls and blankets
- Pump liners
- Seals
- Shoes and boots
- Waterproofing
- Wire/cable jackets and insulation

					PLASTICIZEF	₹					
		Dioplex® Paraplex®									
	100	195	430	904	7017	VLV	A-8000	A-8200	A-8600		
Processing Properties Viscosity and Curing Properties Mooney Viscosity @ 121°C											
Minimum Viscosity	24.5	31.3	33.9	33.2	31.1	28.0	32.1	33.9	28.3		
t5, minutes	7.1	7.7	7.7	7.1	7.4	7.4	4.8	4.8	5.4		
t35, minutes	9.0	9.6	9.6	8.9	9.2	10.4	6.2	6.2	7.8		
Oscillating Disc Rheometer @ 170°C											
M_{L}	5.0	5.0	5.4	5.3	5.0	4.5	5.3	5.0	5.4		
M_{H}	29.7	35.0	35.0	37.7	37.9	37.8	35.4	29.7	25.1		
t _s 2, minutes	1.3	1.2	1.2	1.1	1.2	1.3	1.1	1.1	1.3		
t'c(90), minutes	3.2	2.2	3.5	2.1	2.1	2.3	2.5	2.6	3.7		

					PLASTICIZER				
			Diop					Paraplex®	
	100	195	430	904	7017	VLV	A-8000	A-8200	A-8600
Original Physical Properties									
Stress @ 100% Elongation, MPa	7.7	7.7	8.2	8.0	7.7	7.6	8.9	8.5	8.5
Tensile Ultimate, MPa	14.3	15.3	14.8	15.5	15.3	15.5	12.7	12.9	11.9
Tensile Ultimate, psi	2070	2225	2145	2245	2220	2250	1840	1875	1730
Elongation @ Break, %	525	585	545	565	595	600	465	490	435
Hardness, pts.	62	60	61	58	60	60	61	60	61
Specific Gravity	1.205	1.212	1.216	1.214	1.203	1.201	1.208	1.213	1.214
Low-Temperature Brittleness, °C	-27	-29	-29	-29	-35	-41	-37	-34	-35
T _q , °C	-32.6	-28.7	-26.3	-31.0	-34.3	-36.3	NT	NT	NT
Air Oven, 70h @ 125°C		'	'			-	'		
Tensile Change, %	0	9	3	9	10	5	18	6	12
Elongation Change, %	-41	-34	-39	-34	-38	-41	-32	-42	-33
Hardness Change, pts.	6	5	7	7	4	9	4	6	6
Weight Change, %	-1.1	-1.1	-1.0	-1.0	-1.9	-3.5	-1.3	-0.8	-0.6
IRM 901 Oil, 70h @ 125°C	'	,	,			'			
Tensile Change, %	-2	-3	0	9	7	4	17	14	14
Elongation Change, %	-35	-44	-35	-32	-42	-44	-32	-36	-31
Hardness Change, pts.	13	5	4	7	9	11	4	5	4
Volume Change, %	-3.3	-2.7	-0.6	-2.2	-6.2	-8.8	-4.1	-3.3	-1.8
Weight Change, %	-3.2	-2.9	-1.3	-2.9	-6.0	-8.0	-4.1	-3.0	-2.4
IRM 903 Oil, 70h @ 125°C									
Tensile Change, %	-8	-2	-9	0	-5	1	8	1	4
Elongation Change, %	-32	-34	-33	-33	-40	-36	-29	-36	-26
Hardness Change, pts.	-5	-5	-6	-3	0	2	-3	-4	-6
Volume Change, %	10.0	9.2	13.0	9.7	3.7	1.5	7.6	11.0	14.0
Weight Change, %	6.7	6.4	9.4	6.4	2.0	0.3	4.6	7.1	9.1
Distilled Water, 70h @ 100°C									
Tensile Change, %	3	-2	0	1	-7	-12	6	4	7
Elongation Change, %	-13	-24	-20	-19	-29	-31	-23	-25	-10
Hardness Change, pts.	5	-2	4	1	-2	-2	-1	0	-1
Volume Change, %	5.2	8.5	7.1	7.0	6.3	6.1	6.3	6.6	7.7
Weight Change, %	4.5	7.3	5.8	6.0	5.7	5.5	5.3	5.4	6.4
ASTM Fuel C, 70h @ 23°C									
Tensile Change, %	-63	-64	-60	-64	-54	-56	-56	-59	-58
Elongation Change, %	-59	-59	-56	-58	-52	-53	-57	-58	-56
Hardness Change, pts.	-28	-28	-28	-25	-24	-25	-28	-29	-31
Volume Change, %	65	52	59	53	45	42	50	56	60
Weight Change, %	43	33	39	34	28	27	32	36	40
ASTM Fuel C Dry Out, 22h @ 70°C									
Hardness Change, pts.	3	4	2	7	8	9	9	7	5
Volume Change, %	-3.4	-6.3	-2.4	-6.0	-9.8	-11.0	-11.0	-6.5	-5.8
Weight Change, %	-4.0	-6.9	-3.4	-6.5	-9.7	-10.0	-10.0	-6.8	-6.0

First Choice Second

Second Choice NT = Not Tested

Formulation: Krynac® 3345F - 100.0, Kadox® 920 - 5.0, Sulfur Spider® - 0.4, DQ - 1.0, Carbon Black N660 - 65.0, Stearic Acid - 1.0, Plasticizer - 20.0, MBTS - 2.0, Methyl Zimate - 1.5

 $Krynac^* \ is \ a \ registered \ trademark \ of \ Lanxess. \ Kadox^* \ is \ a \ registered \ trademark \ of \ Horsehead \ Corporation. \\ Plasthall^*, TP-95^*, TP-908^*, TegMeR^* \ and \ Sulfur \ Spider^* \ are \ registered \ trademarks \ of \ Hallstar.$

Phthalate Replacement Plasticizers for Nitrile Rubber (NBR)

POLYMER INFORMATION

Hallstar's innovative Plasthall® PR-Series of plasticizers is on the leading edge of phthalate replacement technology. As environmental and toxicity concerns continue to grow, the desire to remove phthalates from elastomer compounds around the globe is rapidly increasing. DOP (DEHP – Di-2-ethylhexyl phthalate) first fell out of favor when it was required to be classified as a potential carcinogen. The natural progression for most compounders was to DINP and DIDP, and most recently DOTP and DPHP. However, as health and environmental concerns multiply, the use of phthalate esters as a whole is declining, especially after the EU announced a ban on DOP, BBP and DBP by 2015.

The PR-Series is a full line of commercially available phthalate replacements, for use in all types of elastomer applications. Our philosophy is not just to offer a phthalate alternative, but to provide our customers with products that will improve their physical properties. These products meet or exceed the performance and economic demands of the marketplace without the environmental problems. One of these phthalate replacements, PR-A610, is USDA certified to be 99 percent based on renewable raw material streams.

					21.46	0.755					
		PLASTICIZER Plasthall® PR-Series									
		Plast	thall [®] PR-Se	ries							
	A126	A200	A217	A610	LCOA	DPHP	DOTP	DIDP	DINP	DOP	
Processing Properties Viscosity and Curing Properties Mooney Viscosity @ 121°C											
Minimum Viscosity	26.9	28.0	31.1	24.7	32.9	26.8	26.6	27.6	28.6	27.4	
t5, minutes	5.3	7.4	7.4	6.7	4.6	10.7	8.5	5.7	5.6	6.9	
t35, minutes	5.5	4.5	5.0	3.7	5.8	4.2	3.8	5.0	5.0	3.9	
Oscillating Disc Rheometer @ 170°C											
M_{L}	5.5	4.5	5.0	3.7	5.8	4.2	3.8	5.0	5.0	3.9	
M _H	47.7	37.8	37.9	34.8	41.6	32.2	34.1	34.3	34.2	41.	
t _s 2, minutes	1.0	1.3	1.2	1.2	1.0	1.5	1.3	1.2	1.3	1.	
t'c(90), minutes	2.6	2.3	2.1	2.2	2.7	25	2.4	2.6	2.8	2.:	
Original Physical Properties											
Stress @ 300% Elongation, MPa	10.7	7.6	7.7	9.1	7.8	8.3	8.1	7.3	7.1	9.0	
Tensile Ultimate, MPa	15.1	15.5	15.3	15.5	14.8	15.6	16.1	14.6	14.3	16.0	
Tensile Ultimate, psi	2190	2250	2220	2255	2145	2260	2340	2115	2070	232	
Elongation @ Break, %	445	600	595	515	595	575	605	620	615	55	
Hardness, pts.	62	60	60	61	60	62	60	58	58	6.	
Specific Gravity	1.200	1.201	1.206	1.201	1.203	1.191	1.195	1.189	1.191	1.19	
Low-Temperature Brittleness, °C	-42	-41	-35	-32	-33	-32	-35	-38	-36	-3	

		PLASTICIZER									
		Plasthall® PR-Series									
	A126	A200	A217	A610	LCOA	DPHP	DOTP	DIDP	DINP	DOP	
Air Oven, 70h @ 125°C											
Tensile Change, %	11	5	10	13	8	1	12	2	16	15	
Elongation Change, %	-30	-41	-38	-35	-32	-49	-40	-39	-29	-41	
Hardness Change, pts.	10	9	4	8	5	9	12	9	8	14	
Weight Change, %	-3.5	-3.5	-1.9	-3.5	-1.0	-4.1	-5.4	-2.2	-2.7	-8.2	
IRM 901 Oil, 70h @ 125°C	'					,	·	'	,		
Tensile Change, %	12	4	7	18	10	8	6	7	17	22	
Elongation Change, %	-38	-44	-42	-34	-31	-43	-44	-44	-33	-43	
Hardness Change, pts.	8	11	9	4	3	14	16	12	14	13	
Volume Change, %	-12	-8.8	-6.2	-1.1	-3.2	-13	-12	-11	-11	-13	
Weight Change, %	-11	-8.0	-6.0	-0.5	-3.1	-11	-11	-9.4	-9.4	-11	
IRM 903 Oil, 70h @ 125°C											
Tensile Change, %	-6	1	-5	-2	-2	-7	-6	0	5	-2	
Elongation Change, %	-44	-36	-40	-34	-35	-38	-39	-44	-31	-38	
Hardness Change, pts.	3	2	0	5	-3	12	5	2	2	4	
Volume Change, %	0.6	1.5	3.7	0.9	9.8	-13	0.4	3.7	4.0	4.6	
Weight Change, %	-0.8	0.3	2.0	-0.6	6.7	-11	-0.6	2.2	3.0	3.3	
Distilled Water, 70h @ 100°C											
Tensile Change, %	4	-12	-7	10	5	1	1	-4	4	1	
Elongation Change, %	18	-31	-29	-7	-20	-23	-19	-31	-21	-15	
Hardness Change, pts.	-4	-2	-2	3	-2	-3	0	-1	-3	0	
Volume Change, %	4.8	6.1	6.3	3.4	6.3	5.2	4.6	3.8	3.9	2.6	
Weight Change, %	4.2	5.5	5.7	3.1	5.3	4.7	4.2	3.3	3.5	2.6	
ASTM Fuel C Immersion, 70h @ 23°C					,				ļ.		
Tensile Change, %	-59	-56	-54	-46	-59	-52	-51	-53	-52	-49	
Elongation Change, %	-51	-53	-52	-47	-64	-54	-50	-59	-56	-50	
Hardness Change, pts.	-21	-25	-24	-24	-26	-27	-23	-26	-27	-25	
Volume Change, %	40	42	45	38	54	39	38	47	48	38	
Weight Change, %	25	27	28	24	35	26	24	31	32	24	
ASTM Fuel C Dry Out, 22h @ 70°C											
Hardness, pts.	73	69	68	74	68	74	75	70	72	74	
Hardness Change, pts.	15	9	8	13	8	12	15	12	14	12	
Volume Change, %	-12	-11	-9.8	-12	-9.2	-13	-13	-13	-13	-12	
Weight Change, %	-11	-10	-9.7	-11	-8.7	-12	-11	-11	-11	-11	

First Choice

Second Choice

Formulation: Krynac® 3345F - 100.0, Kadox® 920 - 5.0, Sulfur Spider® - 0.4, DQ - 1.0, Carbon Black N660 - 65.0, Stearic Acid - 1.0, Plasticizer - 20.0, MBTS - 2.0, ZDMC - 1.5

 $Krynac^{\$} is a registered trademark of Lanxess. \ Kadox^{\$} is a registered trademark of Horsehead Corporation. \ Plasthall^{\$} is a registered trademark of Hallstar.$

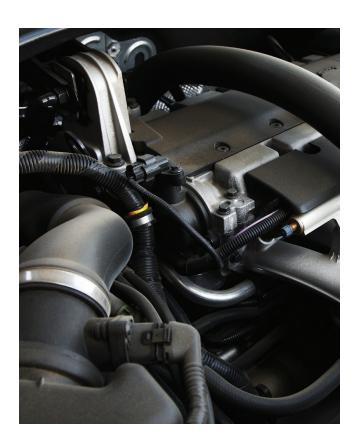
Ester Plasticizers for Acrylic Rubber (AEM/ACM)

POLYMER INFORMATION

Acrylic elastomers, some of which were once identified as polyacrylate elastomers (AEM/ACM), are used for applications requiring 150-177°C continuous service with intermittent exposure to 205°C. Acrylic elastomers have a saturated backbone with pendant groups attached through a carbonyl of such things as ethyl, butyl ethylene, oxyethyl, and have a variety of cure site monomers. Curing occurs through a reactive halogen, epoxy or carboxyl that is part of a pendant group. No cure systems are universal

to all of the reactive groups. Many acrylics require an (oven) post cure at 150–163°C, especially if low compression set is a requirement.

Most of the acrylics require a plasticizer to achieve low-temperature performance. Many monomerics are too volatile to be of value because of the post cure requirement; therefore low-temperature performance can best be achieved with polymerics as well as TP-759® and TegMeR® 812.


APPLICATIONS

PRODUCTS THAT REQUIRE RESISTANCE TO OIL AND FUEL SUCH AS:

- Adhesives
- Belting
- Cable jacket
- Crankshaft seals
- Gaskets

- Hose tubing
- Hoses
- Lip seals
- Metal clad shaft seals
- O-rings

- Pan seals
- Spark plug boots
- Transmission seals
- Valve stem oil deflectors
- Wires and cables

TegMeR® 812 provides the broadest useful temperature range from -50°C to 190°C.

		PLASTICIZER	
	TP-Series TP-759®	TegMeR® 812	Paraplex [®] A-8000
Processing Properties Viscosity and Curing Properties Mooney Viscosity @ 121°C			
Minimum Viscosity	22	22.7	25.
Oscillating Disc Rheometer @ 177°C			
M _L	6.5	1.6	1.
M _H	46.7	42.7	35.
t _s 2, minutes	6.9	8.4	6.
1.25* t'c(90), minutes	8.6	10.5	8.
Sheets Cured, 5m @ 175°C, Post Cured, 4h @	175°C		
Weight Loss After Post Cure, %	-3.1	-1.4	-1.
Original Physical Properties			
Tensile, Ultimate, psi	2065	2255	227
Elongation @ Break, %	205	205	23
Hardness, pts.	76	76	7
Specific Gravity	1.232	1.228	1.23
T _g , °C	-44	-44	-3
Low-Temperature Brittleness, °C	-42	-42	-3
Compression Set, % 22h @ 100°C	32	29	3
Air Oven, 168h @ 177°C			
Low-Temperature Brittleness, °C	-31	-38	-3
Tensile Change, %	-8	-14	-1
Elongation Change, %	-5	-5	-
Hardness Change, pts.	5	0	
Weight Change, %	-5.4	-2.5	
Т _g , °С	-38	-41	-3
IRM 901 Oil, 1wk @ 150°C			
Hardness Change, pts.	1	1	-
Volume Change, %	0.2	-0.8	3
Weight Change, %	-1.2	-1.9	1.
IRM 903 Oil, 1wk @ 150°C			
Hardness Change, pts.	-24	-22	-2
Volume Change, %	50	46	5
Weight Change, %	37	33	3
ASTM SF 105, 1wk @ 150°C			
Hardness Change, pts.	-11	-10	-1
Volume Change, %	17	15	1
Weight Change, %	11	9.3	1
Transmission Fluid, 1wk @ 150°C			
Hardness Change, pts.	70	70	6
Volume Change, %	11	9	1
Weight Change, %	6	5	

First Choice Se

Second Choice

Formulation: Vamac[®] G - 100.00, Carbon Black N-550 - 68.00, Naugard[®] 445 - 2.00, Armeen[®] 18D - 0.50, Vanfre[®] VAM - 1.00, Plasticizer - 20.00, Stearic Acid - 1.50 Mill Addition: Vulcofac[®] ACT 55 - 1.80, Diak[®] 1 - 1.50

Vamac® is a registered trademark of DuPont™. Naugard® is a registered trademark of Chemtura. Armeen® is a registered trademark of AkzoNobel. Vanfre® is a registered trademark of R.T. Vanderbilt. Vulcofac®, Diak™ are registered trademarks of DuPont™. TP-759®, TegMeR® and Paraplex® are registered trademarks of Hallstar.

Monomeric Ester Plasticizers for Polychloroprene (CR)

POLYMER INFORMATION

Polychloroprene (CR) is created through the conversion of unsaturated linear C4 compound to 2-chloro-1, 3-butadiene. Polymerization of chloroprene to polychloroprene today is primarily by free radical emulsion.

Important polychloroprene elastomer variables are crystallization rate,

mercaptan modifications, sulfur modifications and precrosslinked versions. The end use helps direct which of those four variables are best suited to the particular application. Polychloroprene provides limited oil resistance, reasonable weather resistance, good resilience, broad chemical resistance and some flame resistance.

APPLICATIONS

- Adhesives (solvent, solid, dry-film) and mastics
- Calendered sheeting
- Coated fabrics
- Conveyor belts
- Escalator handrails
- Expansion joints
- Grommets
- Hose cover stocks for industrial hoses
- Ignition wire jackets
- Isolation (bridge) pads
- Mattresses

- Packers
- Roof flashing
- Shoe soles
- Spark plug boots
- Sponge gaskets
- Steering boots
- Tank linings
- V-belts
- Various mechanical goods
- Water seals
- Wire and cable jackets

	PLASTICIZER												
		Plasthall [®]									TegMeR [®]		
	100	207 (DBES)	226	503	4141	DIDA	DOA	DOP	DOZ	DOS	8-10TM	TOTM	804S
Processing Properties Viscosity and Curing Properties Mooney Viscosity @ 121°C													
M _L @ 125°C	30.0	32.0	29.0	26.0	29.0	35.0	32.0	38.8	31.0	32.1	36.8	35.0	31.5
t5, 125°C, minutes	14.0	13.0	11.3	14.5	12.8	14.0	13.5	13.0	14.8	15.4	14.5	14.5	11.0
Cure Time, 150°C, minutes	51.0	46.0	41.0	51.0	43.0	50.0	51.0	51.0	55.0	52.0	59.0	55.0	44.0
Original Physical Properties													
Stress @ 100% Elongation, psi	375	400	350	50	400	400	425	425	400	400	450	350	425
Tensile Strength, psi	1500	1500	1600	1500	1650	1500	1550	1650	1600	1525	1700	1700	1600
Elongation @ Break, %	270	250	260	290	260	250	270	260	270	260	270	290	240
Hardness, pts.	66	68	68	65	68	69	68	71	68	69	71	70	68
Specific Gravity	1.436	1.465	1.483	1.451	1.478	1.456	1.454	1.474	1.455	1.453	1.471	1.483	1.474
Tear Resistance, ppi	82	87	79	77	76	88	87	96	78	87	101	104	81
Compression Set, %, 22h @ 100°C	26	290	31	33	35	30	28	30	29	30	29	32	30
Low-Temperature Brittleness, °C	-54	-53	-48	-57	-49	-48	-48	-39	-51	-50	-43	-39	-46
Low-Temperature Modulus, T2, °C	-27	-28	-24	-24	-14	-25	-26	-23	-29	-27	-20	-17	-23
Low-Temperature Modulus, T100, °C	-65	-61	-57	-66	-60	-58	-62	-52	-61	-61	-50	-47	-59

	PLASTICIZER												
	Plasthall [®]								TegMeR®				
	100	207 (DBES)	226	503	4141	DIDA	DOA	DOP	DOZ	DOS	8-10TM	TOTM	804S
Air Oven, 70h @ 100°C													
Elongation Change, %	-15	-16	-8	-35	-12	-5	-33	-17	-11	-14	-4	-14	0
Hardness Change, pts.	5	5	3	16	6	5	10	5	4	4	4	3	2
Weight Change, %	-1.5	-0.7	-1.0	-7.7	-2.0	-1.2	-5.4	-2.8	-1.1	-0.6	-0.3	-0.1	-0.9
Brittle Point, °C	-46	-48	-45	-26	-45	-47	-34	-35	-45	-48	-38	-35	-44
IRM 901, 70h @ 100°C													
Elongation Change, %	-23	-16	-15	-21	-12	-5	-26	-17	-22	-20	-17	-24	13
Hardness Change, pts.	11	7	6	10	8	7	7	6	9	8	6	4	4
Volume Change, %	-9.5	-7.2	-5.5	-9.7	-7.1	-8.9	-8.8	-7.6	-8.4	-8.9	-7.1	-7.5	-6.6
Brittle Point, °C	-31	-30	-31	-30	-30	-30	-30	-28	-29	-30	-22	-29	-28
IRM 903, 70h @ 100°C													
Elongation Change, %	-19	-20	-23	-28	-23	-23	-22	-22	-22	-18	-26	-21	-21
Hardness Change, pts.	-19	-21	-19	-22	-21	-19	-19	-19	-18	20	-26	-24	-19
Volume Change, %	41	43	43	45	43	39	41	40	40	40	41	43	42
Brittle Point, °C	-42	-39	-42	-39	-39	-42	-41	-38	-42	-40	-35	-40	-43
Transmission Fluid, Dextron-II Type, 7	'0h @ 100	°C											
Elongation Change, %	0	-8	-8	-14	-8	-5	-11	-13	-15	-5	-14	-14	4
Hardness Change, pts.	-7	-10	-9	-7	-10	-7	-9	-7	-7	-7	-9	-9	-8
Volume Change, %	4.2	7.5	9.8	5.1	8.4	5.7	5.6	7.2	5.7	5.3	7.2	6.6	8.1
Brittle Point, °C	-40	-34	-37	-37	-36	-34	-35	-34	-37	-35	-38	-34	-37
Distilled Water, 70h @ 100°C													
Elongation Change, %	-15	-12	-12	-14	-23	-14	-19	-13	-19	-16	-9	-17	-13
Hardness Change, pts.	-6	-11	-6	-10	-11	-9	-6	-7	-8	-7	-7	-10	-8
Volume Change, %	15	21	21	17	22	16	15	14	16	15	13	15	21
Brittle Point, °C	-52	-43	-29	-54	-41	-44	-49	-36	-47	-49	-38	-36	-43
Diffusion Stain Resistance													
Sunlamp Exposure [‡]	G	F	F	F	Р	Е	Е	Е	Е	Е	G	Е	F

First Choice Second Choice

Second Choice E = Excellent, no yellowing; G = Good, minimal yellowing; F = Fair, slight yellowing; P = Poor, moderate yellowing

Formulation: Neoprene WK - 100.0, Stearic Acid - 0.5, Stabiwhite Powder - 3.0, Maglite® D(RX) - 4.0, Carbon Black N-774 - 67.0, Crown Clay - 35.0, Plasticizer - 32.0 Mill Additions: Kadox® 930 - 5.0, END 75P - 0.75, TMTD - 0.50

 $Kadox^{\circledast} \ is \ a \ registered \ trademark \ of \ Horsehead \ Corporation. \ Plasthall^{\$} \ and \ TegMeR^{\$} \ are \ registered \ trademarks \ of \ Hallstar.$

[†]Uncured polychloroprene samples with white Ditzler® acrylic lacquer. Rating based on yellowing of acrylic topcoat after 32 hours of sunlamp exposure.

Ester Plasticizers for Chlorinated Polyethylene Elastomers (CPE)

POLYMER INFORMATION

Chlorinated polyethylene elastomers (CPE) are produced from HDPE that is randomly chlorinated in an aqueous slurry. Polymers are differentiated by chlorine content, molecular weight and crystallinity. Chlorine contents generally range from 25 to 42 percent. Advantages of using CPE include very good resistance to ozone, oxidation, abrasion and flex cracking. CPE also has good resistance to alcohols, alkalis and acids. Limitations for CPE include moderate resistance to aromatic oxygenated solvents.

Because of its unsaturation, CPE is usually peroxide-cured and some plasticizers may affect cure rate and degree of cure. Plasticizers containing double bonds (oleates and tallates) can rob curative effectiveness, as can naphthenic oils. Generally, polymeric plasticizers do not provide significant performance advantages over monomerics and are seldom used.

APPLICATIONS

- Gaskets
- Hydraulic hoses
- Injection molding
- Linings

- Mechanical goods and extrusions
- Roofing
- Sheet and sponge
- Wire and cable insulation

Plasthall® P-670 provides the best combination of heat aging as well as oil and fuel resistance.

Plastable Paraplexe Processing Properties Viscosity and Curing Properties Money Viscosity & 121°C M₁ 15.1 23.2 22.8 M₁ 30.1 60.1 52.3 ts2, minutes 3.7 2.9 2.8 tc(90), minutes 10.5 10.5 9.8 Original Physical Properties Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2330 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, Ibf/in. 118 184 200 Low-Temperature Brittleness, "C -34 42 -35 Air Oven, 70h @ 150°C Tensile Change, % 2 -10 2 Elongation Change, % <t< th=""><th></th><th></th><th>PLASTICIZER</th><th></th></t<>			PLASTICIZER	
Processing Properties Viscosity and Curing Properties Viscosity and Curing Properties Money Viscosity № 121°C M₁ 15.1 23.2 22.8 M₁ 30.1 60.1 52.3 ts2, minutes 3.7 2.9 2.8 t'c(90), minutes 10.5 10.5 9.8 Original Physical Properties Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation ® Break, % 340 440 500 Hardness, pts. 73 75 75 Specific Gravity 1.346 1.323 1.327 Tear Resistance, Ibf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Over, 70h © 150°C Tensile Change, % 2 -10 2 Elongation Change, % -2 -10 -2 2 Hardness Change, pts. -3 <td< th=""><th></th><th>Plast</th><th>thall®</th><th>Paraplex®</th></td<>		Plast	thall®	Paraplex®
Viscosity № 121°C A. 15.1 23.2 22.8 M _H 30.1 60.1 52.3 ts2, minutes 3.7 2.9 2.8 t*c(P0), minutes 10.5 10.5 9.8 Original Physical Properties Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation ® Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, Ibfrin. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h @ 150°C 7 79 -2 Elongation Change, % 2 -10 -2 Elongation Change, % -2.6 -3.9 1.8 IRM 902, 70h @ 150°C 7 -2 -2		P-670	TOTM	G-62
M _H 30.1 60.1 52.3 ts2, minutes 3.7 2.9 2.8 t'c(90), minutes 10.5 10.5 9.8 Original Physical Properties Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Terr Resistance, Ibf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h @ 150°C 118 184 200 Tensile Change, % 2 -10 -2 Elongation Change, % 2 -10 -2 Hardness Change, pts. -5 7 9 Weight Change, % -12 -22 -30 Elongation Change, % -12 -22 -30 Weight Change, % 58	Viscosity and Curing Properties			
ts2, minutes tc9(m), minutes	$M_{\scriptscriptstyle{L}}$	15.1	23.2	22.8
t'c(90), minutes 10.5 9.8 Original Physical Properties Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, Ibf/in. 118 184 200 Low-Temperature Brittleness, °C -34 42 -35 Air Oven, 70h @ 150°C 34 42 -35 Air Oven, 70h @ 150°C 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts. -9 -32 -20 Tensile Chang	M_{H}	30.1	60.1	52.3
Original Physical Properties Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, Ibf/in. 118 184 200 Low-Temperature Brittleness, °C -34 42 -35 Air Oven, 70h @ 150°C 2 -10 -2 Tensile Change, % 2 -10 -2 Elongation Change, % -2 -30 -20 Hardness Change, pts. -5 7 9 Weight Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts. -36 -74 -77 Elongation Change, % -3 49 61 ASTM Fuel C Dry Ou	ts2, minutes	3.7	2.9	2.8
Stress @ 100% Elongation, psi 200 300 200 Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, lbf/in. 118 184 200 Low-Temperature Brittleness, °C 34 42 35 Air Oven, 70h @ 150°C Tensile Change, % 2 -10 2 Elongation Change, % 3 -6 30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -56 -61 -54 Hardness Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, % -56 -61 -54 Hardness Change, % -56 -61 -54 Hardness Change, % -56 -61 -54 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	t'c(90), minutes	10.5	10.5	9.8
Tensile, Ultimate, MPa 14.4 17.1 16.1 Tensile, Ultimate, psi 2100 2500 2350 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, libf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h @ 150°C Tensile Change, % 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -56 -61 -54 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Original Physical Properties			
Tensile, Ultimate, psi 2100 2500 2350 Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, lbf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h @ 150°C 2 -10 -2 Tensile Change, % 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C 2 -30 -20 Hardness Change, pts. -30 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts. -30 -29 -35 Volume Change, % 58 49 61 Weight Change, % -56 -61 -54 Hardness Change, pts. -40 -38 -46 Volume Cha	Stress @ 100% Elongation, psi	200	300	200
Elongation @ Break, % 340 440 500 Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, lbf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 3.35 Air Oven, 70h @ 150°C Tensile Change, % 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -2.6 -3.9 -3.0 Elongation Change, % -9 -3.2 -2.0 Hardness Change, pts30 -29 -3.5 Volume Change, % -58 49 61 Weight Change, % -76 -74 -77 Elongation Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, pts40 -52 -51 Volume Change, % -50 -51 -54 Hardness Change, pts50 -51 -54 Neight Change, % -50 -51 -54 Hardness Change, pts50 -51 -51 Neight Change, % -50 -51 -51 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts10 -10	Tensile, Ultimate, MPa	14.4	17.1	16.1
Hardness, pts. 73 75 74 Specific Gravity 1.346 1.323 1.327 Tear Resistance, lbf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h © 150°C Tensile Change, % 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h © 150°C Tensile Change, % -2.6 -3.9 -1.8 IRM 902, 70h © 150°C Tensile Change, % -9 -32 -20 Hardness Change, pts9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 43 41 41 ASTM Fuel C, 70h © 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -60 -52 -61 ASTM Fuel C Dry Out, 22h © 70°C Hardness Change, pts. 8 12 11 Volume Change, % -10 -19 -16	Tensile, Ultimate, psi	2100	2500	2350
Specific Gravity 1.346 1.323 1.327 Tear Resistance, Ibf/in. 118 184 200 Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h @ 150°C -2 -30 -20 Tensile Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C -2 -30 -20 Tensile Change, % -9 -32 -20 Hardness Change, pts. -30 -29 -35 Volume Change, pts. -30 -29 -35 Volume Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts. -40 -38 -46 Volume Change, % -6 -52 -61 ASTM Fuel C Dry Out, 22h @ 70°C -70°C -70°C -70°C -70°C -70°C -70°C -70°C -70°C -70°C	Elongation @ Break, %	340	440	500
Tear Resistance, Ibf/in. Low-Temperature Brittleness, °C -34 -42 -35 Air Oven, 70h @ 150°C Tensile Change, % Elongation Change, % -6 -30 -20 Hardness Change, pts. Weight Change, % Elongation Change, % -12 Elongation Change, % -12 Elongation Change, % -30 Elongation Change, % -12 -22 -30 Hardness Change, pts. -30 -29 -35 Volume Change, % -30 -29 -35 Volume Change, % -30 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -36 -40 -38 -46 Volume Change, % -40 -38 -46 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Hardness, pts.	73	75	74
Low-Temperature Brittleness, °C Air Oven, 70h @ 150°C Tensile Change, % Elongation Change, % Binder Change, % Weight Change, pts. Tensile Change, % Tensile Change, % Weight Change, % Tensile Ch	Specific Gravity	1.346	1.323	1.327
Air Oven, 70h @ 150°C Tensile Change, % 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -50 -51 -54 Hardness Change, % -60 -52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Tear Resistance, lbf/in.	118	184	200
Tensile Change, % 2 -10 -2 Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % -56 -61 -54 Weight Change, % -60 -52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Low-Temperature Brittleness, °C	-34	-42	-35
Elongation Change, % -6 -30 -20 Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Air Oven, 70h @ 150°C			
Hardness Change, pts. 5 7 9 Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -16	Tensile Change, %	2	-10	-2
Weight Change, % -2.6 -3.9 -1.8 IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Elongation Change, %	-6	-30	-20
IRM 902, 70h @ 150°C Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Hardness Change, pts.	5	7	9
Tensile Change, % -12 -22 -30 Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Weight Change, %	-2.6	-3.9	-1.8
Elongation Change, % -9 -32 -20 Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	IRM 902, 70h @ 150°C			
Hardness Change, pts30 -29 -35 Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Tensile Change, %	-12	-22	-30
Volume Change, % 58 49 61 Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts. -40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Elongation Change, %	-9	-32	-20
Weight Change, % 43 41 41 ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Hardness Change, pts.	-30	-29	-35
ASTM Fuel C, 70h @ 23°C Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Volume Change, %	58	49	61
Tensile Change, % -76 -74 -77 Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Weight Change, %	43	41	41
Elongation Change, % -56 -61 -54 Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	ASTM Fuel C, 70h @ 23°C			
Hardness Change, pts40 -38 -46 Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Tensile Change, %	-76	-74	-77
Volume Change, % 104 91 106 Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Elongation Change, %	-56	-61	-54
Weight Change, % 60 52 61 ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Hardness Change, pts.	-40	-38	-46
ASTM Fuel C Dry Out, 22h @ 70°C Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Volume Change, %	104	91	106
Hardness Change, pts. 8 12 11 Volume Change, % -12 -19 -16	Weight Change, %	60	52	61
Volume Change, % -12 -19 -16	ASTM Fuel C Dry Out, 22h @ 70°C			
•	Hardness Change, pts.	8	12	11
Hardness Change, pts10 -15 -14	Volume Change, %	-12	-19	-16
	Hardness Change, pts.	-10	-15	-14

Best Choice

Formulation: Tyrin® CM0136 - 100.0, Carbon Black N-330 - 50.0, Hi-Sil TM 233 - 10.0, Agerite® Resin D - 0.2, DAP - 10.0, Plasticizer - 35.0, Trigonox® 17/40 - 2.0, Vul-Cup® 40KE - 6.0

Tyrin® is a registered trademark of The DOW Chemical Company. Hi-SilTM is a trademark of PPG Industries. Agerite® is a registered trademark of R.T. Vanderbilt. Trigonox® is a registered trademark of AkzoNobel, Inc. Vul-Cup® is a registered trademark of Arkema, Inc. Plasthall® and Paraplex® are registered trademarks of Hallstar.

Ester Plasticizers for Hydrogenated Nitrile Butadiene Rubber (HNBR)

POLYMER INFORMATION

Hydrogenated nitrile butadiene rubber (HNBR) is produced by hydrogenating the double bonds of the butadiene component of nitrile butadiene rubber (NBR). This reduces the number of double bonds which causes the backbone of the polymer to become linear hydrocarbon chains with pendant nitrile groups. The saturation level of HNBR typically ranges from 94 percent to 100 percent.

Some of the effects of reducing the double bonds of the butadiene component are:

- The elastomer is less polar.
- The elastomer becomes more plastic in character than the NBR from which it was produced.
- The elastomer is less susceptible to attack by oxygen and ozone.
- The elastomer is more heat resistant.
- Fully-saturated HNBR is peroxide curable only.
- Lower-saturated HNBR is both sulfur and peroxide curable.

APPLICATIONS

PRODUCTS THAT REQUIRE RESISTANCE TO OIL AND FUEL SUCH AS:

- Fuel cell liners
- Fuel lines and hoses (covers and tubes)
- Gaskets

- Grommets
- O-rings
- Oil well parts
- Packings
- Seals
- Timing belts

Plasthall® RP-1020 is a reactive plasticizer that provides excellent resistance to oils and fuels. It also provides low-temperature performance equal to that of TOTM, but with superior volatility resistance in high-temperature applications.

		PLAST	ICIZER	
	Plast	:hall®	Para	plex®
	TOTM	RP-1020	A-8210	A-8600
Original Physical Properties				
Stress @ 100% Elongation, MPa	6.0	4.5	5.5	5.6
Tensile, Ultimate, MPa	23.2	20.2	24	22.4
Tensile, Ultimate, psi	3360	2930	3480	3255
Elongation @ Break, %	395	525	445	390
Hardness, pts.	72	69	70	72
Specific Gravity	1.17	1.16	1.17	1.17
Low-Temperature Brittleness, °C	-64	-68	-62	-60
Compression Set, % 70h @ 135°C	48	58	48	48
Air Oven, 14d @ 135°C				
Tensile Change, %	-11	2	-7	-3
Elongation Change, %	-19	-26	-22	-17
Hardness Change, pts.	6	10	9	8
Weight Change, %	-2.9	-4.5	-3	-2.4
IRM 901 Oil, 168h @ 135°C				
Tensile Change, %	6	10	1	6
Elongation Change, %	-6	-16	-20	-18
Hardness Change, pts.	4	3	6	3
Volume Change, %	-5.9	-2.8	-2.6	-1
Weight Change, %	-5.5	-2.7	-2.8	
Distilled Water, 168h @ 100°C				
Tensile Change, %	-2	-1	0	6
Elongation Change, %	9	-6	-11	-8
Hardness Change, pts.	-1	1	1	0
Volume Change, %	1.7	3.1	5	6.2
Weight Change, %	1.8	3	4.6	5.6
Synthetic Motor Oil 5W-30, 960h @ 1	40°C			
Tensile Change, %	7	13	0	4
Elongation Change, %	-43	-51	-46	-45
Hardness Change, pts.	7	7	7	5
Volume Change, %	-4.1	-0.8	-0.7	1.5
Weight Change, %	-3.1	-0.1	-0.4	1.5
ASTM Fuel C, 70h @ 23°C				
Tensile Change, %	-45	-46	-48	-46
Elongation Change, %	-44	-58	-51	-59
Hardness Change, pts.	-25	-31	-22	-21
Volume Change, %	56	67	61	65
ASTM Fuel C Dry Out, 22h @ 70°C				
Hardness Change, pts.	2	2	2	1
Volume Change, %	-5.7	-3.3	-3.7	-1.7
Weight Change, %	-5.4	-3.2	-3.8	-2.7

First Choice

Second Choice

Formulation: Zetpol® 2000 - 100.0, Carbon Black N-550 - 50.0, Kadox® Zinc Oxide - 5.0, Naugard® 445 - 1.5, Vanox® ZMTI - 1.0, Plasticizer – 10.0, Peroxide 8.0

 $Zetpol^{@} is a registered trademark of Zeon Corporation. Kadox^{@} is a registered trademark of Horsehead Corporation. Naugard^{@} is a registered trademark of R.T. Vanderbilt. Plasthall^{@} and Paraplex^{@} are registered trademarks of Hallstar.$

Monomeric Ester Plasticizers for Epichlorohydrin Rubber (ECO)

POLYMER INFORMATION

Epichlorohydrins are touted as possessing a combination of many of the desirable properties of polychloroprene and nitrile. A potential drawback to epichlorohydrin is its lack of resistance to oxygenated solvents, steam and acid. The mode of failure is reversion (devulcanization). Advantages to epichlorohydrins include good resistance to ozone and oxidation. Unlike the copolymer, the terpolymer can be readily blended with SBR and nitrile, and can be sulfur-cured.

APPLICATIONS

- Fuel pump diaphragms
- Fuel, oil and gas hoses
- Gaskets
- Motor mounts
- O-rings
- Vibration isolators

		PLAST	ICIZER	
		Plasthall®		TP-Series
	7006	7050	226 (DBEEA)	TP-759®
Processing Properties Viscosity and Curing Properties Mooney Viscosity @ 121°C				
Minimum Viscosity	42.3	41.3	39.2	40.6
t5, minutes	8.3	7.3	7.7	7.7
t35, minutes	12.5	10.8	11.5	11.2
Oscillating Disc Rheometer @ 160°C				
M_{\scriptscriptstyleL}	10.1	10.1	9.6	10.1
M_{H}	39.1	45.0	44.5	51.1
t _s 2, minutes	2.8	2.8	2.8	2.8
t'c(90), minutes	19.5	21.8	22.8	24.3
Original Physical Properties				
Stress @ 100% Elongation, MPa	2.8	2.4	2.6	2.8
Tensile, Ultimate, MPa	10.3	10.5	10.0	11.5
Elongation @ Break, %	365	405	375	395
Hardness, pts.	64	61	63	64
Tear Resistance, ppi	236	250	237	249
Specific Gravity	1.378	1.389	1.379	1.391
Compression Set, 70h @ 125°C	55	46	52	53
Low-Temperature Brittleness, °C	-46	-45	-50	-47

		PLASTICIZER			
		Plasthall [®]		TP-Series	
	7006	7050	226 (DBEEA)	TP-759®	
Air Oven, 70h @ 150°C					
Tensile Change, %	-3.3	-16	-3.4	-2	
Elongation @ Break, %	205	200	200	20	
Elongation Change, %	-44	-51	-47	-4	
Hardness Change, pts.	16	10	12		
Weight Change, %	-10.0	-5.9	-9.2	-4.	
IRM 901 Oil, 70h @ 150°C					
Tensile Change, %	15	8	24	1	
Elongation Change, %	-49	-54	-45	-4	
Hardness Change, pts.	11	14	13	1	
Volume Change, %	-13	-11	-12	-1	
Weight Change, %	-9.6	-9.4	-9.9	-9.	
IRM 903 Oil, 70h @ 150°C	<u>'</u>				
Tensile Change, %	-3.3	-6.6	1.7	-19	
Elongation Change, %	-41	-49	-41	-5	
Hardness Change, pts.	6	8	7		
Volume Change, %	-3.8	-3.3	-4.2	-3	
Weight Change, %	-3.6	-4.1	-4.1	-4	
Distilled Water, 70h @ 100°C					
Tensile Change, %	-37	-31	-26	-3	
Elongation Change, %	-47	-53	-45	-4	
Hardness Change, pts.	-13	-13	-10	-1	
Volume Change, %	33	38	32	2	
Weight Change, %	25	28	24	3	
ASTM Fuel C Immersion, 70h @ 23°C					
Tensile Change, %	-28	-33	-28	-4	
Elongation Change, %	-41	-54	-47	-5	
Hardness Change, pts.	-14	-13	-11	-1	
Volume Change, %	15.3	24.5	23.2	23	
Weight Change, %	12.4	12.7	12.5	12	
ASTM Fuel C Dry Out, 22h @ 70°C					
Hardness Change, pts.	11	11	12		
Volume Change, %	-17.3	-13.2	-13.9	-13	
Weight Change, %	-12.6	-10.5	-10.4	-10	

Formulation: Hydrin® T5010 - 100.0, Carbon Black N-550 - 40.0, Carbon Black N-330 - 20.0, Talc - 15.0, Vanox® CDPA - 1.0, Vanox® MTI - 0.5, Stearic Acid - 1.0, Struktol® WB 222 - 2.0, Atomite® - 15.0, Maglite® D - 0.3, Plasticizer - 8.0, Zisnet® F-PT 0.8, Vanax® DPG - 0.5, Vulkalent® E/C - 0.3

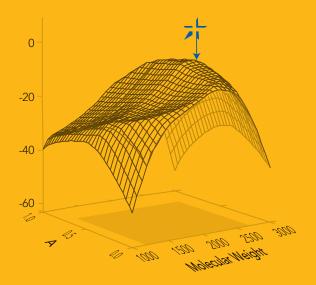
Hydrin® and Zisnet® are registered trademarks of Zeon Corporation. Vanox® and Vanax® are registered trademarks of R.T. Vanderbilt. Struktol® is a registered trademark of Struktol/Schill & Seilacher. Atomite® is a registered trademark of Imerys Minerals, Ltd. Vulkalent® is a registered trademark of Lanxess. Plasthall® and TP-759® are registered trademarks of Hallstar.

Polymeric Ester Plasticizers for Epichlorohydrin Rubber (ECO)

POLYMER INFORMATION

Epichlorohydrins are touted as possessing a combination of many of the desirable properties of neoprene and nitrile. A potential drawback to epichlorohydrin is its lack of resistance to oxygenated solvents, steam and acid. The mode of failure is reversion (devulcanization). Advantages to epichlorohydrins include good resistance to ozone and oxidation. Unlike the copolymer, the terpolymer can be readily blended with SBR and nitrile, and can be sulfur-cured.

APPLICATIONS


- Fuel pump diaphragms
- Fuel, oil and gas hoses
- Gaskets
- Motor mounts
- O-rings
- Vibration isolators

		PLASTICIZER			
	Plasthall [®]				
	P-670	G-50	A-8000	A-8200	 A-8600
Processing Properties Viscosity and Curing Properties Mooney Viscosity @ 121°C	1-070	<u> </u>	A-0000	A-0200	A-0000
Minimum Viscosity	62	62.4	64.3	66.8	68.1
t10, minutes	6.6	7.1	6.7	6.4	6.1
t35, minutes	11	12.1	10.9	10.7	10.2
Oscillating Disc Rheometer @ 180°C					
$M_{_{\!\scriptscriptstyle L}}$	11.3	10.6	11	11.6	11.4
$M_{_{H}}$	53.9	49.2	49.5	51.3	48.7
t _s 2, minutes	1.7	1.6	1.7	1.7	1.0
t'c(90), minutes	35.5	32	31.5	33.2	32.3
Original Physical Properties				,	
Stress @ 100% Elongation, MPa	4.9	4.7	4.8	4.6	4.6
Tensile Ultimate, MPa	10.8	11.9	13	12.7	12.1
Elongation @ Break, %	310	320	365	375	365
Hardness, pts.	73	72	72	72	72
Specific Gravity	1.475	1.472	1.471	1.473	1.473
T _g , °C	-44	-42.9	-44.3	-43.4	-42.3
Compression Set, % 22h @ 100°C	20	21	20	22	29
Low-Temperature Brittleness, °C	-34	-34	-37	-37	-34
Air Oven, 70h @ 150°C					
Stress Change, %	43	44	41	43	42
Tensile Change, %	4	-4	-11	-6	
Elongation Change, %	-42	-31	-45	-40	-40
Hardness Change, pts.	6	5	7	5	4
Weight Change, %	-2	-1.8	-1.8	-1.6	-1.
T _{a′} °C	-42.8	-42.6	-43.3	-42.9	-42.7

		PLASTICIZER			
	Plasthall®		Paraplex [®]		
	P-670	G-50	A-8000	A-8200	A-8600
IRM 901 Oil, 70h @ 150°C					
Tensile Change, %	10	14	2	0	9
Elongation Change, %	-44	-36	-45	-49	-44
Hardness Change, pts.	9	11	10	9	9
Volume Change, %	-7.7	-7.8	-8.4	-7	-7
Weight Change, %	-5.6	-5.4	-6	-4.9	-5.4
IRM 903 Oil, 70h @ 150°C					
Tensile Change, %	5	-8	-18	-16	-7
Elongation Change, %	-34	-38	-45	-48	-41
Hardness Change, pts.	2	2	3	1	2
Volume Change, %	1	1.8	0.3	2.8	2.9
Weight Change, %	0.1	0.6	-0.3	1.3	0.6
Distilled Water, 70h @ 100°C					
Tensile Change, %	-1	-5	-6	-4	2
Elongation Change, %	-32	-34	-33	-35	-32
Hardness Change, pts.	-12	-11	-13	-11	-11
Volume Change, %	31	31	29	30	30
Weight Change, %	22	22	21	21	21
ASTM Fuel C Immersion, 70h @ 23°C					
Tensile Change, %	-42	-36	-39	-34	-33
Elongation Change, %	-48	-36	-42	-41	-41
Hardness Change, pts.	-20	-20	-19	-20	-20
Volume Change, %	32	33	31	35	35
Weight Change, %	17	18	17	19	19
ASTM Fuel C Dry Out, 22h @ 70°C					
Hardness Change, pts.	6	8	9	4	7
Volume Change, %	-9.1	-8.2	-9.4	-7.3	-7.6
Weight Change, %	-6.5	-6	-6.7	-5.2	-5.5
80% Diesel/20% Biodiesel, 1wk @ 100°C	,				
Tensile Change, %	-26	-38	-37	-34	-35
Elongation Change, %	-42	-47	-53	-49	-48
Hardness Change, pts.	-6	-8	-5	-8	-8
Volume Change, %	4.6	5.3	4	6.6	6.3
Weight Change, %	9	10	8	12	12

Formulation: Hydrin® T5010 - 100.0, Carbon Black N-550 - 40.0, Carbon Black N-330 - 20.0, Talc - 15.0, Vanox® CDPA - 1.0, Vanox® MTI - 0.5, Stearic Acid - 1.0, Struktol® WB 222 - 2.0, Atomite® - 15.0, Maglite® D - 0.3, Plasticizer - 8.0, Zisnet® F-PT - 0.8, Vanax® DPG - 0.5, Vulkalent® E/C - 0.3

Hydrin® and Zisnet® are registered trademarks of Zeon Corporation. Vanox® and Vanax® are registered trademarks of R.T. Vanderbilt. Struktol® is a registered trademark of Struktol/Schill & Seilacher. Atomite® is a registered trademark of Imerys Minerals, Ltd. Vulkalent® is a registered trademark of Lanxess. Plasthall® and Paraplex® are registered trademarks of Hallstar.

THE PARAPLEX APPROACH

The above three-dimensional Response Surface Diagram is generated as part of the Paraplex Approach. The image illustrates the optimized chemical composition of a custom-designed plasticizer with the best combination of properties for the application in question. The Hallstar star next to the arrow indicates the optimal solution point.

With decades of experience formulating specialty plasticizers, Hallstar is recognized as a premier supplier to the polymer industry. Our Paraplex® brand is the benchmark for high-performance plasticizers and continues to be strengthened through our innovative approach to customized plasticizer formulation, which combines cuttingedge technology with our broad expertise.

The Paraplex Approach is a molecular design system developed by Hallstar to characterize and synthesize plasticizer solutions for well-defined customer performance requirements. Through the use of existing performance data, application knowledge and the latest in computer simulation technology, raw materials can be rapidly adjusted in precise combinations to create a plasticizer that solves critical performance issues.

Our targeted approach helps reduce product qualification time, improve speed to market for new product development and meet the continuously changing needs of your customers.

PLASTICIZER AND POLYMER POLARITY CHART

			** - *** ****
POLYMER		PLASTICIZER CLASS	PLASTICIZER
Nylon 6/6		Aromatic Sulfonamides	Plasthall® BSA
Nylon 6			
PET			
Cellulose Acetate		Aromatic Phosphate Esters	
NBR (50% ACN)		Alkyl Phosphate Esters	
Polyurethane		Dialkylether Diesters	Plasthall® 7050
Nitrocellulose		Tricarboxylic Esters	
Ероху		Polymeric Polyesters	Paraplex® A-Series; Paraplex® G-25, G-30, G-40, G-50, G-54, G-57, G-59; Plasthall® P-550, P-643, P-650, P-670, P-675, P-900, P-7046, P-7092, PR-A200, PR-A217; Dioplex® 100, 128, 171, 195, 430, 7017, 904, 907, 917, 925, PLA, VLV
Polycarbonate		Polyglycol Diesters	Plasthall® 4141, 7071; TegMeR® 804 Special, 809, 810, 812
Acrylic (PMMA) Polyvinyl Acetate		Formals	TP-90B®
		Polyester Resins	Paraplex® RGA-7, RGA-8, GA-20
NBR (30% ACN)	D	Alkyl Alkylether Diesters	Plasthall® 7006, 207 (DBES), 83SS, 209, 226 (DBEEA); TP-95®, TP-759®
	0	Aromatic Diesters	Plasthall® BBP, DOP, DBP, DINP, DIDP
Polyvinyl Butyral Epichlorohydrin	<u>o</u>	Aromatic Triesters	Plasthall® TOTM, 8-10TM
Chlorosulfonated Polyethylene Polyvinyl Chloride	arit	Aliphatic Diesters	Plasthall® DOA, DOS, 297, CF, DOA, DIBA, DIDA, DTDA
Cellulose Acetate Butyrate	X		
Polystyrene	1	Epoxidized Esters	Plasthall® S-73
		Expoxidized Oils	Paraplex® G-60, G-62; Plasthall® ELO, ESO
Polyvinyl Alcohol			
Polychloroprene		Chlorinated Hydrocarbons	
Polyethylene		Aromatic Oils	
NBR (20% ACNf)		Alkylether Monoesters	
Chlorinated Polyethylene		Napthenic Oils	
Highly-Saturated Nitrile			
SBR		Alkyl Monoesters	Plasthall® 100, 503, 425
Polybutadiene		Glyceride Oils	
Natural Rubber			
Halogenated Butyl Polypropylene			
EPDM			
Butyl			
Fluorinated Polymers			
Silicone		Silicone Oils	
		Processing Aids*	Peptizer 566, 932N

The higher a plasticizer is on the chart, the more likely it will be compatible with the polymers roughly opposite or below it. Using this polarity guide, plasticizers with the best chance of succeeding in a particular compound can be selected, though other requirements such as low-temperature flexibility, extraction resistance, elongation and modulus must still be considered. Please contact us if you need a specific plasticizer recommendation.

NOTE: Suprmix® free-flowing powder form is available for most plasticizers.

^{*}Peptizers are useful in processing non-polar elastomers. Cannot categorize as polar or nonpolar.

HALLSTAR

Corporate and Executive Offices: 120 South Riverside Plaza, Suite 1620 Chicago, IL 60606 USA

For customer service and general inquiries: 1-877-427-4255 International: +1-312-385-4494

11 012 000 1171

www.hallstar.com

